Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Language
Document Type
Year range
1.
Aims Microbiology ; 9(3):444-466, 2023.
Article in English | Web of Science | ID: covidwho-20233940

ABSTRACT

Abatract: In recent years studies of nanomaterials have been explored in the field of microbiology due to the increasing evidence of antibiotic resistance. Nanomaterials could be inorganic or organic, and they may be synthesized from natural products from plant or animal origin. The therapeutic applications of nano-materials are wide, from diagnosis of disease to targeted delivery of drugs. Broad-spectrum antiviral and antimicrobial activities of nanoparticles are also well evident. The ratio of nanoparticles surface area to their volume is high and that allows them to be an advantageous vehicle of drugs in many respects. Effective uses of various materials for the synthesis of nanoparticles impart much specificity in them to meet the requirements of specific therapeutic strategies. The potential therapeutic use of nanoparticles and their mechanisms of action against infections from bacteria, fungi and viruses were the focus of this review. Further, their potential advantages, drawbacks, limitations and side effects are also included here. Researchers are characterizing the exposure pathways of nano-medicines that may cause serious toxicity to the subjects or the environment. Indeed, societal ethical issues in using nano-medicines pose a serious question to scientists beyond anything.

2.
Frontiers in Nanotechnology ; 4, 2022.
Article in English | Scopus | ID: covidwho-1974664

ABSTRACT

NV-CoV-2, a nanoviricide composed of covalently attached polyethylene glycol and alkyl pendants that are designed to bind free virion particles of multiple strains of coronaviruses in a broad-spectrum manner at multiple points. The binding interaction is like a nano-velcro-tape and may cause a lipid–lipid fusion between nanoviricide micelle and the lipid envelope of the virus. A nanoviricide can encapsulate the virus and dismantle it without any involvement of the host immune system, ultimately disabling the infectibility of the host cells. Thus, it may be expected to count a stronger and synergistic antiviral effect by combining NV-CoV-2 with other anti-coronavirus regimens like remdesivir. Furthermore, some ligands similar to the SARS-CoV S-protein are designed by molecular modeling and attached to the nanoviricide at the same site as where the cognate cellular receptor, ACE2, binds. As a result, a competitive binding inhibition may occur. A nanoviricide can encapsulate other antiviral compounds and protect them from serum-mediated degradation in vivo. This makes the antiviral compounds available for a longer period of time to interact with RNA polymerase and inhibit it. Altogether, a multipoint antiviral efficacy can be achieved with our nanoviricide, NV-CoV-2. Copyright © 2022 Chakraborty, Diwan, Barton, Arora, Thakur, Chiniga, Tatake, Pandey, Holkar, Holkar and Pond.

SELECTION OF CITATIONS
SEARCH DETAIL